13 research outputs found

    Assessing the degeneration of cassava under high-virus inoculum conditions in coastal Tanzania

    Get PDF
    Open Access Article; Published online: 19 Jul 2019Cassava brown streak disease (CBSD), caused by cassava brown streak ipomoviruses (CBSIs), has become the most debilitating biotic stress to cassava production in East and Central Africa. Lack of CBSD-resistant varieties has necessitated the search for alternative control measures. Most smallholder farmers reuse stems from previous crops for planting in the new season. Recycling planting material in this way can lead to “degeneration” owing to the compounding effects of disease. In this study, degeneration was defined as the increase in CBSD incidence and reduction in marketable root yield over time. An experiment was established to study the rates of degeneration in selected cassava varieties Chereko, KBH2002_135, Kipusa, Kizimbani, and Mkuranga1 and cultivars Kiroba and Kikombe under high-CBSD inoculum conditions in Bagamoyo, Tanzania from 2013 to 2017. The experiment was replicated across two seasons: the first planted during the long rains (Masika) between March and June and the second planted during the short rains (Vuli) between October and December. Mean abundance of the whitefly vector (Bemisia tabaci) was much greater during the Vuli season (>19 insects per plant) than the Masika season (<2 insects per plant). CBSD shoot symptoms occurred naturally and were observed only on Kikombe, Kiroba, and Kipusa. New materials had overall lower CBSD shoot incidences (1.5%) compared with recycled materials (6.9%) in Masika, although no significant differences were obvious in Vuli. However, Masika (8.7%) had an overall lower CBSD shoot incidence than Vuli (16.5%) in the varieties that had shoot symptoms. CBSD root incidences were higher in Vuli (10.3%) than Masika (4.4%), and root yields in Masika (29.4 t/ha) were significantly greater than those in Vuli (22.5 t/ha). The highest percentage of roots rendered unusable owing to CBSD was observed in Vuli. There was significantly higher unusable root incidence in recycled materials (3.7%) than in new materials (1.4%) in Masika but not in Vuli. Overall root yield was similar between recycled and new materials in either season. Significant reductions in root yield over the course of the experiment were observed both in Masika and Vuli, whereas changes in marketable yield were significant only in Masika. Differences in the response of varieties to degeneration led to the identification of four degeneration patterns, namely “strong,” “moderate,” “mild,” and “delayed” degeneration. The strongest effects of degeneration were most obvious in the susceptible cultivar (Kikombe), which also had the lowest marketable yield in either season. Seasonal differences were a key driver of degeneration, because its effects were much greater in Vuli than Masika. To the best of our knowledge, this work reports the first study of degeneration caused by cassava viruses

    Diversity and distribution of whiteflies colonizing cassava in eastern Democratic Republic of Congo

    Get PDF
    Open Access Journal; Published online: 19 Sep 2022The present study characterizes Bemisia tabaci and Bemisia afer from cassava in eastern Democratic Republic of Congo (DRC). The Mitochondrial COI sequencing revealed the occurrence of six cassava B. tabaci mitotypes, which were designated into four haplogroups (SSA-ECA, SSA-CA, SSA2, and SSA-ESA) using KASP SNP genotyping. SSA-ECA (72%) was the most prevalent and occurred in the northern part of the surveyed area, in the Ituri and Nord/Sud-Kivu provinces, whilst SSA-CA (21%) was present in the south, primarily in Haut-Katanga. SSA-ECA was predominant in the areas of north-eastern DRC most severely affected by cassava brown streak disease and was also reported in the new outbreak area in Pweto territory, Haut-Katanga, in the south. Bemisia afer comprised two major clusters with 85.5% of samples in cluster one, while the rest were in cluster two, which has no reference sequence in GenBank. This study provides important information on the genetic diversity of B. tabaci and B. afer in eastern DRC. This knowledge will be used as a basis for further studies to understand and to identify the role of whitefly haplogroups, their population densities and consequences for virus epidemics and spread as well as leading to improved vector and virus management strategies

    Epidemiological analysis of Cassava Mosaic and Brown Streak Diseases, and Bemisia tabaci in the Comoros Islands

    Get PDF
    first_pagesettingsOrder Article Reprints Open AccessArticle Epidemiological Analysis of Cassava Mosaic and Brown Streak Diseases, and Bemisia tabaci in the Comoros Islands by Rudolph Rufini Shirima 1,*ORCID,Everlyne Nafula Wosula 1ORCID,Abdou Azali Hamza 2,Nobataine Ali Mohammed 2,Hadji Mouigni 2,Salima Nouhou 2,Naima Mmadi Mchinda 2,Gloria Ceasar 1,Massoud Amour 1,Emmanuel Njukwe 3 andJames Peter Legg 1ORCID 1 International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania 2 Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros 3 West and Central African Council for Agricultural Research and Development (CORAF), Dakar CP 18523, Senegal * Author to whom correspondence should be addressed. Viruses 2022, 14(10), 2165; https://doi.org/10.3390/v14102165 Received: 2 August 2022 / Revised: 15 September 2022 / Accepted: 28 September 2022 / Published: 30 September 2022 (This article belongs to the Special Issue Plant Virus Surveillance and Metagenomics) Download Browse Figures Review Reports Versions Notes Abstract A comprehensive assessment of cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) was carried out in Comoros where cassava yield (5.7 t/ha) is significantly below the African average (8.6 t/ha) largely due to virus diseases. Observations from 66 sites across the Comoros Islands of Mwali, Ngazidja, and Ndzwani revealed that 83.3% of cassava fields had foliar symptoms of CBSD compared with 95.5% for CMD. Molecular diagnostics confirmed the presence of both cassava brown streak ipomoviruses (CBSIs) and cassava mosaic begomoviruses (CMBs). Although real-time RT-PCR only detected the presence of one CBSI species (Cassava brown streak virus, CBSV) the second species (Ugandan cassava brown streak virus, UCBSV) was identified using next-generation high-throughput sequencing. Both PCR and HTS detected the presence of East African cassava mosaic virus (EACMV). African cassava mosaic virus was not detected in any of the samples. Four whitefly species were identified from a sample of 131 specimens: Bemisia tabaci, B. afer, Aleurodicus dispersus, and Paraleyrodes bondari. Cassava B. tabaci comprised two mitotypes: SSA1-SG2 (89%) and SSA1-SG3 (11%). KASP SNP genotyping categorized 82% of cassava B. tabaci as haplogroup SSA-ESA. This knowledge will provide an important base for developing and deploying effective management strategies for cassava viruses and their vectors

    Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania

    Get PDF
    Open Access Article; Published online: 24 May 2020Cassava brown steak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), is the most important biotic constraint to cassava production in East and Central Africa. Concerted efforts are required to prevent further spread into West Africa as well as to reduce losses in areas already affected. The study reported here was part of a five-country (Kenya, Malawi, Mozambique, Tanzania and Uganda) programme that aimed to identify superior cassava cultivars resistant to CBSD and to disseminate them widely in the region. Seventeen tissue-cultured and virus-tested cultivars were evaluated in Tanzania across nine sites with diverse CBSD inoculum conditions. Experiments were planted using an alpha-lattice design and assessments were made of surrounding inoculum pressure, CBSD foliar and root incidence and root yield at harvest. There were large differences in CBSD infection between sites, with greatest spread recorded from the north-western Lake (Victoria) zone. Differences were driven by Bemisia tabaci whitefly vector abundance and CBSD inoculum pressure. Both CBSV and UCBSV were almost equally represented in cassava fields surrounding experimental plots, although CBSV predominated in the north-west whilst UCBSV was more frequent in coastal and southern sites. However, the incidence of CBSV was much greater than that of UCBSV in initially virus-free experimental plots, suggesting that CBSV is more virulent. Cultivars could be categorised into three groups based on the degree of CBSD symptom expression in shoots and roots. The seven cultivars (F10_30R2, Eyope, Mkumba, Mkuranga1, Narocass1, Nase3 and Orera) in the most resistant category each had shoot and root incidences of less than 20%. Fresh root yield differed between sites and cultivars, but there was no genotype by environment interaction for this trait, probably attributable to the large fertility and soil moisture differences between sites. Susceptible cultivars and the local check performed well in the absence of CBSD pressure, highlighting the importance of exploiting quality and yield traits of local landraces in breeding programmes. Overall, our results emphasized the importance of applying a balanced strategy for CBSD management. This should use both improved and local germplasm resources to generate high yielding cultivars for specific end-user traits, and combine the deployment of improved cultivars with phytosanitary control measures including the use of healthy planting material and planting during periods of reduced CBSD infection

    First report of mixed infection of cassava brown streak virus and Ugandan cassava brown streak virus on cassava in north-eastern Democratic Republic of Congo.

    No full text
    Open Access Article; Published online: 15 Nov 2018Cassava brown streak disease (CBSD), caused by two viruses (Cassava brown streak virus and Ugandan cassava brown streak virus) is one of the most important diseases affecting cassava in East and Central Africa. The viruses are spread through infected stem cuttings and by the whitefly Bemisia tabaci. Recognized from coastal East Africa since the 1930s, it is only in recent years that outbreaks have occurred in higher altitude areas of the African Great Lakes region (Legg et al. 2011). CBSD caused by UCBSV was officially reported for the first time from eastern Democratic Republic of Congo (DRC) in Nord-Kivu Province by Mulimbi et al. (2012). Eastern DRC is on the ‘front’ of the westwards-spreading pandemic of CBSD, and it is vital to understand the identity and epidemiology of viruses associated with this outbreak. If CBSV was to be reported from DRC, this increased diversity of CBSD-causing viruses would increase the threat posed by the disease and make management more difficult

    Absolute quantification of cassava brown streak virus mRNA by real-time qPCR

    No full text
    Article purchasedCassava brown streak disease (CBSD) is the most important virus disease of cassava and a major food security threat in Africa. Yearly economic losses of up to $100 million USD have been attributed to CBSD. The lack of information on plant-virus interactions has restricted progress in breeding for CBSD resistance. Virus quantification is becoming a major tool for the quick and reliable assessment of plant host resistance. Therefore, a protocol for specific absolute quantification of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) was developed. CBSV and UCBSV coat protein (CP) specific standard templates: CBSV (pFer2, 826 bp) and UCBSV (pUF1-R1-1, 732) respectively were generated and maintained in a TA cloning vector. These were used to construct standard curves using a TaqMan qPCR assay. Standard curves with acceptable amplification efficiencies (90–105%) and coefficients of determination (R2) greater than 0.99 were obtained. Infected cassava plants were sampled from a screenhouse and the field and used to validate this assay. Results obtained by testing several screenhouse and field samples revealed consistent absolute quantification assays for different CBSV and UCBSV isolates. This study presents the first protocol for absolute quantification of CBSVs and is expected to accelerate screening for CBSD resistance and hence breeding for CBSD resistance. The use of the method presented here should improve the clarity of virus quantification data as the results obtained are not influenced by varietal, host, seasonal or environmental conditions. Screening efficiency will also be greatly improved as there is no need for the use of reference genes consequently allowing for a larger number of samples to be analyzed. This will increase experimental precision in a timely and cost effective manner

    The role of livestock keeping in human brucellosis trends in livestock keeping communities in Tanzania

    Get PDF
    A cross-sectional survey was carried out in Karatu and Ngorongoro districts in Arusha region and Babati, Hanang and Mbulu districts in Manyara region involving 20 agro-pastoral and 9 pastoral villages, to establish the magnitude of human brucellosis in relation to livestock brucellosis. A multistage random sampling was used to select villages, sub-village administrative units, ten cell leadership units and animal keeping households. A total of 460 humans from 90 families (19 pastoral and 71 agro-pastoral families) and 2723 domestic ruminants from 90 livestock households were sampled and bled to obtain serum samples for analysis. A competitive enzyme linked-immunosorbent assay (c-ELISA) was used to analyse these samples to detect Brucellacirculating antibodies. The overall livestock seroprevalence was 5.7% with 32.2% of livestock households being seropositive whereas, human seropositivity was 8.3% with 28% family households being seropositive. The highest proportion of seropositive families was observed in Ngorongoro district (46%) and the lowest in Babati district with no seropositive family household. Family members in seropositive livestock households were 3.3 (OR) times more likely to be seropositive than those with seronegative livestock households. However; 25% of seronegative family households had seropositive livestock households and 48% seropositive family households had seronegative livestock households. Therefore, Brucellainfection is widespread in the human populations and their livestock in the northern Tanzania and thus humans may acquire infection from their own animals or from other sources thus prompted public health awareness creation in such communities

    Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa

    No full text
    Cassava mosaic disease and cassava brown streak disease are caused by viruses transmitted by Bemisia tabaci and affect approximately half of all cassava plants in Africa, resulting in annual production losses of more than $US 1 billion. A historical and current bias towards virus rather than vector control means that these diseases continue to spread, and high Bemisia populations threaten future virus spread even if the extant strains and species are controlled. Progress has been made in parts of Africa in replicating some of the successes of integrated Bemisia control programmes in the south-western United States. However, these management efforts, which utilise chemical insecticides that conserve the Bemisia natural enemy fauna, are only suitable for commercial agriculture, which presently excludes most cassava cultivation in Africa. Initiatives to strengthen the control of B. tabaci on cassava in Africa need to be aware of this limitation, and to focus primarily on control methods that are cheap, effective, sustainable and readily disseminated, such as host-plant resistance and biological control. A framework based on the application of force multipliers is proposed as a means of prioritising elements of future Bemisia control strategies for cassava in Africa

    Expansion of the cassava brown streak disease epidemic in eastern Democratic Republic of Congo

    No full text
    Published Online:17 Aug 2021Cassava plays a key role in ensuring food security and generating income for smallholder farmers throughout Central Africa, particularly in the Democratic Republic of Congo (DRC). This status is threatened, however, by cassava brown streak disease (CBSD), which has expanded its incidence and range in eastern DRC. The study described here comprises the first extensive assessment of temporal change in the occurrence of CBSD and its causal viruses in DRC, based on surveys conducted during 2016 and 2018. Cassava fields were inspected in Ituri, Nord-Kivu, Sud-Kivu, Tanganyika, and Haut-Katanga provinces within eastern DRC to record foliar incidence and severity of CBSD. Leaf samples were collected for virus detection and species-level identification. New occurrences of CBSD, confirmed by virus diagnostic tests, were recorded in two provinces (Haut-Katanga and Sud-Kivu) and nine previously unaffected territories, covering an area of >62,000 km2, and at up to 900 km from locations of previously published reports of CBSD in DRC. Overall, average CBSD incidence within fields was 13.2% in 2016 and 16.1% in 2018. In the new spread zone of Haut-Katanga, incidence increased from 1.7 to 15.9%. CBSD is now present in provinces covering 321,000 km2, which is approximately 14% of the total area of DRC. This represents a major expansion of the CBSD epidemic, which was only recorded from one province (Nord-Kivu) in 2012. Both Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus were detected in Ituri, Nord-Kivu, and Sud-Kivu, but only CBSV was detected in Haut-Katanga. Overall, these results confirm the increasing threat that CBSD poses to cassava production in DRC and describe an important expansion in the African pandemic of CBSD
    corecore